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Abstract. A 2-state genetic algorithm (GA) approach is used to design a two-dimensional (2D) anisotropic
photonic crystal of square lattice with a maximal absolute band gap. The unit cell is devided equally into
many small squares, and each filling pattern of squares with two dielectric materials corresponds to a
binary number. As a numerical example, the GA gives a 2D Te structure with a relative width of the
absolute band gap of about 23%. After a further optimization, a new structure is obtained with a relative
width of the absolute band gap of about 28%.

PACS. 42.70.Qs Photonic bandgap materials – 78.20.Ci Optical constants (including refractive index,
complex dielectric constant, absorption, reflection and transmission coefficients, emissivity) – 02.70.-c
Computational techniques

In recent years much attention has been focused on pho-
tonic bandgap (PBG) structures [1,2] for their potential
applications. It is interesting to design a photonic crys-
tal with the largest photonic bandgap for a given dielec-
tric contrast. We know that the bandgaps of a photonic
crystal (PC) can be remarkably enlarged by reducing the
symmetry of it. There are several methods to decrease the
symmetry of a PBG structure, and among them using an
anisotropic material is an effective one [3]. The possible
choice of anisotropic materials is always limited in prac-
tice, so it is more valuable to find the best structure for
a properly given anistropic material, than to choose the
most appropriate anistropic material for a given structure
(as indicated in [3]). The former can be effectively accom-
plished by using the genetic algorithm (GA) [4,5] as a
global optimization method. The effectiveness of such a
GA approach has been demonstrated in our previous pa-
per [8] to design a 2D isotropic PC. In the present paper,
we use a similar GA approach to design the structure of
a 2D anisotropic PC, and present the optimal structure
with the largest PBG formed with Te (tellurium, the ma-
terial used in [3]) as an example. The obtained numerical
results again show the effectiveness of the GA approach.

Consider a 2D photonic crystal of square lattice made
of two different materials, one of which is isotropic and the
other is anisotropic(in the present paper, the anisotropic
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material is uniaxial). We choose the extraordinary axis of
uniaxial crystal parallel to the third direction. In such a
system, the propagating electromagnetic waves can also be
decomposed into E- and H-polarization as in a completely
isotropic 2D system, but the dielectric constants for the
two modes are now different. It is assumed that the prim-
itive unit cell of PC has the primary symmetries of being
invariant under the mirror reflection in the xz-plane and
yz-plane and under 90◦ rotation round the z-axis. The
coordinates are chosen in the way that the center of the
primitive unit cell is at its origin and the primitive vectors
are ax̂ and aŷ (a is the period of the square lattice), as
shown in Figure 1. The unit cell is divided into 2M × 2M
squares of equal size, which are called pixels. Each pixel
is filled by one of the two dielectric materials, and various
PC structures can be represented by different pixel-filling
ways. Due to the symmetries, the whole PC structure can
be determined by the pixel-filling pattern of a triangular,
the 1/8 unit cell.

To apply GA to design 2D large PBG structures, one
needs to translate the filling function of a unit cell of PC
into the corresponding binary chromosome(represented by
a binary value, 1 or 0), and to apply GA operators (such
as ranking, selection, crossover, and mutation in each it-
eration, see e.g. [6]) to find the global maximum of the
objective function. The objective function relates to the
relative width of absolute bandgap, i.e. the ratio of the
width to the midfrequency of the bandgap.
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Fig. 1. Division of the unit cell of a 2D photonic crystal (with
certain symmetries) of square lattice. The filling pattern of the
pixels (the small squares) with thick solid line edges in the
triangular part of 1/8 unit cell determines the whole structure
of the photonic crystal.

In the previous paper [8], we developed a 2-state GA
approach with a floating mutation probability to design a
2D isotropic PBG structure, and obtained a GaAs struc-
ture with a relative width of the absolute band gap of
20.1% as a numerical example. A similar GA approach is
used in the design of 2D anisotropic PC, and the same
fast plane-wave expansion method as developed in [7] is
also used in the present paper to calculate the band struc-
ture. This paper will not particularize them again and only
present the numerical result in the following.

As a numerical example, we assume the two dielectric
materials forming the crystals are air and Te, which is a
kind of material with indices of 4.8 for H-polarization and
6.2 for E-polarization [3]. In order to avoid the obtained
structure being impractical for fabrication (e.g. too thin
veins or too small holes), we start with the unit cell divided
into 20 × 20 pixels (i.e., M = 10). The maximum of the
relative width of the absolute band gap tends to become
steady at a value of 23.3764%. The obtained optimal struc-
ture (with the largest fitness) is shown in Figure 2a, and
its photonic band structure is shown in Figure 2b. Partic-
ularly, the structure happens to exhibit another symmetry
(as showed in Fig. 2a) and the area of the actual primi-
tive cell is half of the originally specified one (however,
the following calculation is done according to the origi-
nal primitive cell, i.e. a is referred to the original lattice
constant). This can be reflected in the degeneracies in the
band structure. We can see it is reasonable that the fitness
of chromosomes is not defined as the width of the absolute
band gap, but the relative width of it.

We further divide the unit cell of the square lattice
into 40 × 40 pixels (i.e., M = 20) to get a finer structure.
This time we make an optimization on the edges of the
inclusion (Te) for the structure obtained above (similar
to the edge optimization presented in [8]). We remove the

(a)

(b)

Fig. 2. (a) The best 2D Te photonic crystal found with the GA
with M = 10. (b) The corresponding photonic band structure.

two squares at the corners since they are small and isolated
which make the structure not easy to fabricate. The GA
with the new type of chromosomes is then implemented
in a way similar to the one described earlier. After a long
evolution the maximum of the fitness tends to be steady at
a value of 23.7649%. The optimized structure is shown in
Figure 3, which has an absolute band gap of 0.1545(2πc/a)
at the midfrequency of 0.6502(2πc/a).

The structure of Figure 3 naturally suggests a new
photonic crystal structure of Figure 4a, which has been
rotated 45◦, in order to present an accustomed view of
the actual primitive cell. The new structure is obtained
directly by replacing the staired edges of Figure 3 with
straight line edges or circular edges. It simply consists of
circular and rectangular columns of Te, connected with
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Fig. 3. The best structure of 2D Te photonic crystal found in
the second stage of the GA with M = 20.

veins of the equal width. The structure has both the
concentrated regions of high-ε and the connecting veins
among them. According to the rule of thumb, the for-
mer favors TM band gaps and the latter favors TE band
gaps, which is a possible reason for absolute band gaps
for both polarizations. The originally specified unit cell
of the structure is indicated by the dotted square in
Figure 4a, and the actual primitive cell by the dashed.
The circle is centered at the joint of the two rectan-
gular columns and its radius is 0.05a. Our numerical
calculation shows that this new structure has an abso-
lute band gap of 0.145(2πc/a) with its midfrequency at
0.6619(2πc/a). It is interesting to optimize further the
new structure to achieve an even larger absolute band
gap. We optimize the geometric parameters r, w1, w2,
w3 and w4 (see Fig. 4a for these notations). The sym-
metries of the structure are maintained in the local op-
timization. After a smooth search in the neighboring re-
gion, we find a larger absolute band gap of 0.2064(2πc/a)
at midfrequency of 0.7426(2πc/a) (the relative band gap
increases from 21.5% to 27.8%). The optimal parameters
are r = 0.0485a, w1 = 0.0355a, w2 = 0.108a, w3 = 0.071a,
and w4 = 0.358a. The band structure of this optimized 2D
photonic crystal is shown in Figure 4b.
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Fig. 4. (a) The optimal 2D Te photonic crystal structure (with
smooth edges) suggested by Figure 3a. It has been rotated to
give an accustomed view. (b) The photonic band structure of
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w1 = 0.0355a, w2 = 0.108a, w3 = 0.071a, and w4 = 0.358a.
The ratio of the absolute band gap width to the midfrequency
of the band gap is about 27.8%.
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